<aside>

Why Prompt Compression Matters

<aside>

</aside>

<aside>

Prompt Compression Techniques

<aside>

1. Semantic Summarization.

Example

Original:

Write a friendly email to a customer thanking them for their purchase, offering help, and suggesting related products.

Compressed:

Friendly thank-you email to customer with help + upsell.

</aside>

<aside>

2. Template Abstraction

Example

Instead of:

“Write Python code to parse a CSV file and calculate average values of columns”

Use:

#csv_avg_template

Define this template in memory or a context repository.

</aside>

<aside>

3. Keyword Tokenization

Example

"task:email | tone:friendly | action:thank, help, upsell”

This format can be interpreted by a parser or the model directly with training.

</aside>

<aside>

4. Latent Prompt Embedding (Advanced)

Not directly accessible in vanilla ChatGPT but available via API-level or research integrations.

</aside>

<aside>

5. Reflexive Prompting

Example

“Rewrite this prompt using fewer tokens but preserve its functionality: [prompt]”

This works surprisingly well and can be iterated multiple times.

</aside>

<aside>

6. Modular Prompting

Example Modules:

Then prompt:

“Use system_instructions + task_description to generate a response using context_snippet.”

</aside>

<aside>

7. Code Tokenization

Example

Verbose:

“Write a function that loops over a list and prints each value squared.”

Compressed:

def square_print(lst): for x in lst: print(x**2)

</aside>

<aside>

8. Knowledge Distillation for Prompts

</aside>

<aside> 🛠️

Tools

<aside>

Topic Completed!

🌟Great work! You’re one step closer to your goal.

Ready to Move On →

</aside>

<aside>